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Abstract

In this expository essay, we develop the fundamental correspondence of Galois theory
while paying careful attention to the division of labour between field theory and ele-
mentary linear algebra. The goal is to make plain which parts of the theory only rely on
dimension counting arguments and which rely in an essential way on, for example, the
construction of splitting fields. We then set up a different Galois correspondence, more
linear algebraic in nature than the usual one, in which the role of groups is replaced by
rings of linear transformations and which is applicable to arbitrary finite-dimensional
field extensions, instead of merely to Galois extensions. The usual group-theoretic
Galois correspondence can be recovered from this ring-theoretic one.

Introduction

To the student of Galois theory, the path from the basic setup to the fundamental cor-
respondence theorem may oftentimes feel rather murky. Certain needed facts are trivial
consequences of the definitions, while other, cosmetically similar, facts seem to require more
intricate arguments. Moreover, while one can certainly tell that linear algebraic methods (di-
mensional comparisons, linear independence, etc) are driving a large part of the argument, it
is less clear where to draw the line separating the part of the proof which just relies on linear
algebraic techniques from the part of the proof which is, in an essential sense, field-theoretic
or group-theoretic.

We hope that this expository note can serve as a remedy to the above plight. In the
development of the basic theory which follows, we push the linear algebraic arguments as far
as it is natural for them to go and in this way obtain, we believe, an exposition in which one
can easily identify which parts of the argument are coming from where. In order to achieve
this development, we involve one tool which is not standard fare for a first course in Galois
theory, namely the Jacobson density theorem. The latter will act as a surrogate for Artin’s
lemma used in many standard proofs, e.g. the one in [3].

The structure of this document is as follows. In Section 1, we demonstrate how one can,
without ever defining a splitting field or even considering any rings of polynomials, formulate
and prove the fundamental correspondence of Galois theory. In Section 2, we show how the
use of Artin’s lemma can be replaced by that of the Jacobson density theorem and how, in
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doing this, one may obtain a ring-theoretic form (Theorem 12) of the fundamental correspon-
dence which is, moreover, applicable to all finite-dimensional field extensions, rather than
just to the Galois ones. The correspondence is as follows: given a field E, there is a 1-1 cor-
respondence between subfields F of E such that [E : F ] <∞ and rings R of additive group
endomorphisms of E such that E ⊆ R (as multiplication operators) and dimE(R) <∞. The
correspondence simply associates to each F the ring LF (E) of F -linear transformations of
E. In Section 3, we illustrate the ring-theoretic correspondence theorem with some simple
examples.

1 The usual Galois correspondence

The utility of dimension counting strategies in Galois theory mostly traces back to a pair
of results commonly known as Dedekind’s lemma and Artin’s Lemma. Dedekind’s lemma,
as we aim to bring out below, is little more than an instance of the fact that eigenvectors
with distinct eigenvalues are linearly independent. Recall that a character of a group G is a
homomorphism from G to the multiplicative group of nonzero elements of some field.

Lemma 1 (Dedekind’s lemma). For any group G and field E, the set of E-valued characters
of G is linearly independent in the vector space EG of E-valued functions on G.

A natural way to show that a collection of vectors v1, . . . , vn is linearly independent is to
exhibit operators ∆1, . . . ,∆n such that ∆i(vj) 6= 0 if and only if i = j. In the case where
v1, . . . , vn are eigenvectors of an operator T with distinct eigenvalues λ1, . . . , λn, this can be
achieved by taking ∆i =

∏
j 6=i(T − λj · id). Along the same lines, we have

Proof of Dedekind’s lemma. For each g ∈ G, let Tg : EG → EG be the translation operator
(Tgf)(x) = f(gx). Observe that, if ϕ : G→ E is a character, then ϕ is an eigenvector of Tg
with eigenvalue ϕ(g). If ϕ1, . . . , ϕn are distinct characters, then, for all i 6= j, there exists
gij ∈ G such that ϕi(gij) 6= ϕj(gij). Putting ∆i =

∏
j 6=i(Tgij − ϕj(gij) · id), we find that

∆i(ϕj) 6= 0 if and only if i = j, whence ϕ1, . . . , ϕn are independent.

Since a field imbedding K ↪→ E is, in particular, an E-valued character for the multi-
plicative group K×, one has the following important corollary in field theory.

Corollary 2. For any fields K and E, the set Imb(K,E) of field imbeddings K ↪→ E is
E-linearly independent in EK. In particular, Aut(E) is linearly independent in EE.

Corollary 2 tells us that the size of a collection of E-valued imbeddings or automor-
phisms is bounded by the dimension of any finite-dimensional E-vector space containing the
collection. The following proposition is trivial.

Proposition 3. Let F ⊆ K ⊆ E be a tower of fields and write ImbF (K,E) for the set of
ϕ ∈ Imb(K,E) such that ϕ

∣∣
F

= idF . Then,

1. ImbF (K,E) ⊆ LF (K,E), the set of F -linear maps from K to E.
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2. LF (K,E) is an E-subspace of EK with dimension [K : F ].

In particular, if E/F is some field extension, we have

3. AutF (E) ⊆ LF (E)

4. LF (E) is an E-subspace of EE with dimension [E : F ].

Combining the above proposition with Corollary 2, we immediately have

Corollary 4. For any tower of fields F ⊆ K ⊆ E, one has |ImbF (K,E)| ≤ [K : F ]. In
particular, for any field extension E/F , one has |AutF (E)| ≤ [E : F ].

Note that the statement “E/F is Galois and F ⊆ K ⊆ E implies E/K is Galois”
is a triviality once it is known the Galois extensions are the splitting fields of separable
polynomials. However, if we insist on staying in the world of basic linear algebra, there is
still an easy and rather informative proof. We take the following definition.

Definition 5. A finite-dimensional field extension E/F is called a Galois extension if
|AutF (E)| = [E : F ], i.e. there are as many automorphisms as permitted by Corollary 4.

In order to show that a Galois extension is also Galois over any intermediate field, we
use a natural generalization of the orbit-stabilizer theorem applicable to subsets instead of
individual points. Specifically, suppose that a group G acts on a set X and let S be a subset
of X. Define the stabilizer subgroup Stab(S) to consist of all g ∈ G such that gx = x for
all x ∈ S and the orbit Orb(S) to be the set of all imbeddings S ↪→ X arising as x 7→ gx
for some g ∈ G. Then, the map G/Stab(S) → Orb(S) sending a left-coset gStab(S) to the
imbedding x 7→ gx : S → X is a well-defined bijection. So, with these definitions, we get
|G| = |Stab(S)| · |Orb(S)| as usual.

Proposition 6. Let F ⊆ K ⊆ E be a tower of finite-dimensional field extensions. If E/F
is Galois, then so is E/K. In fact, we have

1. |AutK(E)| = [E : K]

2. |ImbF (K,E)| = [E : F ]

3. Every element of ImbF (K,E) occurs as ϕ
∣∣
K

for some ϕ ∈ AutF (E).

Proof. Applying the orbit-stabilizer theorem discussed above withG = AutF (E), X = E and
S = K gives |AutF (E)| = |AutK(E)|·|{ϕ

∣∣
K

: ϕ ∈ AutF (E)}|. By assumption, |AutF (E)| =
[E : F ]. By Corollary 4, |AutK(E)| ≤ [E : K]. We have {ϕ

∣∣
K

: ϕ ∈ AutF (E)} ⊆
ImbF (K,E) and, by Corollary 4, |ImbF (K,E)| ≤ [K : F ]. The desired conclusions follow.

As a corollary, we can prove half of the fundamental correspondence theorem.

Corollary 7. Let E/F be a finite-dimensional Galois extension. Then, for any field K with
E ⊆ K ⊆ E, one has EAutK(E) = K.
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Proof. Let H = AutK(E) and K ′ = EH . It’s easy to see that K ′ ⊇ K and AutK′(E) = H.
The preceding proposition gives [E : K] = |H| = [E : K ′], whence K = K ′.

In view of the above, to get the full correspondence theorem, it just remains to check
that going from groups to subfields and back also gives the identity. To achieve this, it is
standard to make of use of Artin’s lemma, stated below.

Lemma 8 (Artin’s Lemma). Let H be a finite group of automorphisms of a field E. Then,
E is a finite-dimensional extension of FH with [E : FH ] ≤ |H|.1

Artin’s lemma is also, essentially, a linear algebraic result. See [3], pp. 236 for a proof in
this vein. In the next section, we shall see that the role of Artin’s lemma can be filled by the
Jacobson density theorem which is, in the author’s view, an even more linear algebraic tool.

Corollary 9. Let H be a finite group of automorphisms of a field E. Then, AutEH (E) = H.

Proof. Let F = EH . By Lemma 8 (Artin’s lemma), E is finite-dimensional over F and
[E : F ] ≤ |H|. Let H ′ = AutF (E). By Lemma 1 (Dedekind’s lemma), |H ′| ≤ [E : F ].
Obviously, H ′ ⊇ H, and so we have |H| ≤ |H ′| ≤ [E : F ] ≤ |H| whence, all quantities being
equal, H = H ′, as needed.

Together, Corollary 7 and Corollary 9 give the fundamental correspondence.

Theorem 10 (Fundamental correspondence of Galois theory). Let E/F be a finite-dimensional
Galois extension with Galois group G = AutF (E). Then, the maps K 7→ AutK(E) and
H 7→ EH communicating between intermediate extensions F ⊆ K ⊆ E and subgroups H ⊆ G
are mutually inverse.

Note that, throughout this section, we have not really done any field theory. We have
not discussed splitting fields, nor indeed considered any rings of polynomials. Nothing but
basic linear algebra has transpired, and yet the fundamental correspondence of Galois has
been established.

2 The ring-theoretic correspondence

Given a field E, we write L (E) for the ring of additive group homomorphisms E → E.
Notice that E ⊆ L (E) as the multiplication operators Ma, a ∈ E which send x 7→ ax. We
shall establish a 1-1 correspondence between:

• fields F contained in E such that E is finite-dimensional over F ,

• rings R ⊆ L (E) containing E such that R is finite-dimensional over E.

The correspondence sends a field F to LF (E), the ring of F -linear transformations.
Note that LE(E) = E and LQ(E) = L (E), where Q is the prime field of E. In the other
direction, we use the map R 7→ ER provided by the following easy lemma.

1In fact, [E : FH ] = |H|.
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Figure 1: Schematic of the ring-theoretic correspondence. Note both the fields and the rings
sit in a single poset one may think of the correspondence as a sort of reflection through E.
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Lemma 11. Let E be a field and consider a subring R ⊆ L (E) such that E ⊆ R. Then,
ER = {T ∈ L (E) : TS = ST for all S ∈ R} is a subfield of E.

Proof. Since E ⊆ R, each element of ER is an E-linear map of E and so ER ⊆ E. Clearly
ER is closed under addition and multiplication and 1 ∈ ER. If a 6= 0 is in ER and T ∈ R,
then multiplying TMa = MaT on both sides by Ma−1 shows that a−1 ∈ ER too.

Put differently, ER is the largest subfield F ⊆ E satisfying R ⊆ LF (E). We now state
the ring-theoretic form of the fundamental Galois correspondence which we aim to prove.

Theorem 12 (Ring-theoretic correspondence theorem). Let E be a field. Then, F 7→ LF (E)
and R 7→ ER define mutually inverse bijections between subfields F of E such that [E : F ] <
∞ and subrings R ⊆ L (E) with E ⊆ R such that dimE(R) < ∞. Moreover, this bijection
preserves the aforementioned dimensions.

Remark 13. (a) It is well-known that the centre of LF (V ) is F whenever V is a vector space
on a field F . So, one direction of this fundamental correspondence is trivial; we have
ELF (E) = F for any field extension E/F (finite-dimensional or not).

(b) The “moreover” part of Theorem 12 follows from the first half of the theorem; once we

know that each R is LF (E) for some F , then dimE(R) = dimF (R)
[E:F ]

= [E:F ]2

[E:F ]
= [E : F ].

(c) Both of the assignments F 7→ LF (E) and R 7→ ER are the result of forming the
commutator subring inside of L (E). If the theory of central simple algebras is available,
then the above theorem may be viewed as a corollary of the double centralizer theorem.
See [4], Page 115 for details.
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As noted in (a) above, to prove Theorem 12 we just need to show that going from subrings
to subfields and back gives the identity. In the interest of sticking as close as possible to the
main thoroughfare of linear algebra, we shall check this using the Jacobson density theorem.
Specializing the statement for the present context, this amounts to the following theorem.

Theorem 14 (Jacobson density theorem). Let E be a field and R ⊆ L (E) a ring of
transformations of E such that E ⊆ R ⊆ L (E). Let F be the subfield ER ⊆ E of Lemma 11.
Then, R is dense in LF (E) in the sense that, for any S ∈ LF (E) and any finite F -
dimensional subspace V of E, there exists T ∈ R such that T = S on V .

In the interest of keeping this document self-contained, we include a proof of the above,
following the one given in [2] on Page 420.

Proof. The nontrivial part of the argument is contained in the following claim.

Claim. For any finite, F -independent set e1, . . . , en ∈ E, there exists T ∈ R such that
T (e1) 6= 0 and T (ei) = 0 for i > 1.

We prove the claim by induction on n. When n = 1, we may take T = 1 (since E ⊆ R).
When n = 2, suppose for contradiction that Te2 = 0 implies Te1 = 0, T ∈ R. Then, we

get a well-defined map θ : E → E by the definition θ(Te2) = Te1, T ∈ R. Of course, taking
T = xe−12 where x ∈ E is arbitrary, it is clear that θ is just x 7→ e1e

−1
2 x. On the other hand,

notice that θ commutes with R by the calculation θ(TSe2) = TSe1 = Tθ(Se2), T, S ∈ R.
Thus, θ = e1e

−1
2 ∈ F , contradicting the F -independence of {e1, e2}.

Generally, take n > 2 and assume the claim for n − 1. Let W = spanF{e3, . . . .en} and
let IW be the left ideal in R consisting of elements which annihilate W . By the inductive
hypothesis, IW e2 6= 0 and so, since E ⊆ R, actually IW e2 = R. Suppose for contradiction
that Te2 = . . . = Ten = 0 implies Te1 = 0. Then, we get a well-defined map θ : E → E by
the definition θ(Te2) = Te1, T ∈ IW . Again, note that θ commutes with R by the calculation
θ(TSe2) = TSe1 = Tθ(Se2), T ∈ R, S ∈ IW (using that IW is a left ideal), and so θ ∈ F .
But now, for any T ∈ IW , we have Te1 = θTe2 = Tθe2 i.e. the images of e1 and θe2 are the
same under any element of IW . Since, by the induction hypothesis, any element of E \W is
not killed by some element of IW , we must conclude that e1 = θe2 (mod W ), contradicting
that e1 /∈ spanF{e2, . . . , en}. This completes the proof of the claim.

To recover the full statement, let e1, . . . , en be an F -basis for V . By the above lemma,
there are T1, . . . , Tn ∈ R such that Ti(ej) 6= 0 if and only if i = j. Since E ⊆ R, we can
replace Ti with Ti(ei)

−1Ti and get Ti(ej) = δij (the Dirac delta). Put T =
∑n

i=1 S(ei)Ti.

The ring-theoretic correspondence theorem that we are aiming for is a straightforward
consequence of the Jacobson density theorem.

Proof of Theorem 12. As noted in Remark 13, we only need to show that, if R ⊆ L (E) is
a ring such that E ⊆ R and dimE(R) < ∞, then R = LF (E), where F = ER. Indeed, by
the simple linear algebraic lemma given below, there exists a finite set Y ⊆ E such each T
in R is determined by its restriction to Y . Take any S ∈ LF (E). By the Jacobson density
theorem, there exists, for any x ∈ E, a Tx ∈ R such that Tx = S on Y ∪ {x}. On the
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other hand, since elements of R are determined by their values on Y , all these Tx ∈ R must
actually be equal, and equal to S, so that S ∈ R.

Lemma 15. Let X be a set, E a field and denote by EX the vector space of E-valued
functions on X. Then, for any n-dimensional subspace V ⊆ EX , there exists an n-element
set Y ⊆ X such that f 7→ f |Y defines a vector space isomorphism from V to EY ∼= En.

Proof. We show by induction on n that, if f1, . . . , fn ∈ EX are linearly independent functions,
then an n-element set Y ⊆ E can be chosen so that f1|Y , . . . , fn|Y are a basis for EY . If
n = 1, we just know f1 is not identically zero. Put Y = {x} for some point x ∈ X on
which f1 is not zero. Now suppose that the claim holds for some n ≥ 1 and consider n + 1
linearly independent functions f1, . . . , fn, f ∈ EX . By hypothesis, there is an n-element set
Y ⊆ X such that f1|Y , . . . , fn|Y are a basis for EY . Thus, there are unique ci ∈ E such that
f |Y =

∑n
i=1 cifi|Y . On the other hand, f does not actually belong to the span of f1, . . . , fn,

so there is some z ∈ X with f(z) 6=
∑n

i=1 cifi(z). Then, it is easy to see that the restrictions
of f, f1, . . . , fn to Y ∪ {z} are linearly independent.

Let us now explain how this ring-theoretic Galois correspondence can be used to recover
the usual group-theoretic one. The basic point is that every finite group of automorphisms
of a field determines a unique ring of the type encountered in Theorem 12.

Definition 16. Let H be a finite group of automorphisms of a field E. Denote by E oH
the subring of L (E) generated by E and H, where E is embedded in L (E) as the collection
of multiplication operators Ma, a ∈ E.

The basic features of this of the ring E oH are tabulated in the following proposition.

Proposition 17. Let H = {1 = ϕ1, . . . , ϕn} be a finite group of automorphisms of a field
E. Then, the following hold.

(i) ϕMaϕ
−1 = Mϕ(a) for all a ∈ E, ϕ ∈ Aut(E)

(ii) E oH = {
∑n

i=1Maiϕi : a1, . . . , an ∈ E}, where Ma denotes multiplication by a ∈ E

(iii) dimE(E oH) = n

(iv) (E oH) ∩ Aut(E) = H

(v) EEoH = EH

(vi) E oH = LEH (E).

Proof. (i) is a calculation. For (ii), note that “⊇” is obvious and the relation (i) implies “⊆”.
(iii) is a consequence of (ii). For (iv), we obviously have “⊇” and, on the other hand, Aut(E)
is E-independent in L (E) (Corollary 2 of Dedekind’s lemma) and so, by (iii), EoH cannot
contain any additional automorphisms. For (v), the left hand side is all the elements of E
(embedded in L (E) as multiplication operators) which commute with E and H, whereas
the right hand side is the elements of E commuting with H and so, since E commutes with
itself, we are done. Finally, (vi) follows from (v) and Theorem 12.
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Remark 18. The relation (i) justifies the notation E oH, which is intended as a nod to the
crossed-product construction, commonplace in operator theory.

It is now easy to use our ring-theoretic correspondence Theorem 12 to give an alternate
proof of Corollary 9, the statement of which is repeated below.

“Let H be a finite group of automorphisms of a field E. Then, AutEH (E) = H.”

Together with Corollary 7, this facilitates an alternate proof of the fundamental corre-
spondence theorem of Galois theory which avoids any use of Artin’s lemma.

Alternate proof of Corollary 9. Let H be a finite group of automorphisms of some field E
and put R = E oH, as in Definition 16 above. Then,

AutEH (E) = AutER(E) Proposition 17 (v)

= LER(E) ∩ Aut(E)

= R ∩ Aut(E) Proposition 17 (vi)

= H Proposition 17 (iv)

as desired. The second line uses the rather obvious fact that AutF (E) = LF (E) ∩ Aut(E),
valid for any subfield F of E.

When E/F is a Galois extension, we know that the Galois group H = AutF (E) is an
E-basis for LF (E) = E o H. If E is only finite-dimensional over F , and not necessarily
Galois, we still have an easy, but less canonical, way to produce an E-basis for LF (E).

Lemma 19. Let E be a finite-dimensional field extension of F and fix an F -basis u1, . . . , un
for E. Then, the corresponding coordinate projections P1, . . . , Pn ∈ LF (E) are an E-basis
for LF (E).

Proof. Since dimE(LF (E)) = n, we just need to check the Pi are E-independent. Suppose
that a1, . . . , an ∈ E are such that

∑n
i=1MaiPi = 0. Applying this equation to ui gives

aiui = 0 whence ai = 0.

3 Computations

We conclude by illustrating the ring-theoretic correspondence in some simple cases. Consider
a simple extension E = Q(α) of a field Q where α has minimum polynomial p(x) = xn +
an−1x

n−1 + . . . + a0. Recall that 1, α, . . . , αn−1 is a Q-basis for E and, with respect to this
basis, we may identify LQ(E) with Mn(Q). Under this identification, the copy of E in
LQ(E) is generated by the diagonal copy of Q and the so-called companion matrix.

Cp =


0 0 0 · · · −a0
1 0 0 · · · −a1
0 1 0 · · · −a2
...

...
...

. . .
...

0 0 0 · · · −an−1


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In this situation, there are finitely-many fields between Q and E = Q(α). Indeed, a classic
theorem due to Steinitz asserts that an extension has a primitive element precisely when
there are a finite number of intermediate field extensions (see Theorem 4.28 in [3]). We
pause to make note of the following corollary of Theorem 12.

Corollary 20. Let p(x) = xn + an−1x
n−1 + . . .+ a0 be a monic irreducible polynomial over

a field Q. Then, only finitely many subrings R ⊆ Mn(Q) contain both the diagonal copy of
Q and the companion matrix Cp described above.

Proof. Such rings are in bijection with subextensions of Q(α) over Q, where α has minimum
polynomial p.

Suppose now that F is an intermediate field between E = Q(α) and Q with [E : F ] = k
and [F : Q] = d, so that n = dk. Since E = F (α) too and the minimum polynomial of α
over F has degree k, we have that 1, α, . . . , αk−1 is an F -basis for E. Thus, by Lemma 19,
the corresponding projections P1, Pα . . . , Pαk−1 are an E-basis for LF (E).

Let us now restrict attention to the case where Q = Q and α = n
√
a for some a ∈ Q, a > 0.

Assume also that p(x) = xn−a is irreducible, and therefore equals the minimum polynomial
of α (for instance, this happens when a is a prime number, by Eisenstein’s criterion). In this
case, the powers of the companion matrix

Cxn−a =


0 0 0 · · · a
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


are easily calculated and one obtains that, under the identification of L (E) with Mn(Q),
the copy of E = Q(α) in L (E) is given by

E =




b0 abn−1 abn−2 · · · ab1
b1 b0 abn−1 · · · ab2
b2 b1 b0 · · · ab3
...

...
...

. . .
...

bn−1 bn−2 bn−3 · · · b0

 : b0, . . . , bn−1 ∈ Q


.

The intermediate fields F between Q and E = Q( n
√
a) are also easy to describe; they

are just the various fields F = Q( d
√
a) where d is a positive divisor of n (see [1], Exercise 4,

pp. 626). Indeed, d 7→ Q( d
√
a) is an order isomorphism from positive divisors of n to such

intermediate fields. As noted above, a natural F -basis for E is {1, α, . . . , αk−1}, where
k = n/d, and, by Corollary 19, the corresponding projections P1, Pα, . . . , Pαk−1 are an E-
basis for LF (E). Furthermore, since αk = d

√
a ∈ F , it is easy to see that a Q-basis for the

9



F -span of each αi, 0 ≤ i ≤ k−1 is αi, αi+k, αi+2k, . . . , αi+n−k. Thus, under the identification
of L (E) with Mn(Q), the projections P1, Pα, . . . , Pαk−1 are given by the diagonal matrices

P1 = diag(1, 0, . . . , 0︸ ︷︷ ︸, 1, 0, . . . , 0︸ ︷︷ ︸, . . . , 1, 0, . . . , 0︸ ︷︷ ︸)
Pα = diag(0, 1, . . . , 0︸ ︷︷ ︸, 0, 1, . . . , 0︸ ︷︷ ︸, . . . , 0, 1, . . . , 0︸ ︷︷ ︸)

...

Pαk−1 = diag(0, 0, . . . , 1︸ ︷︷ ︸, 0, 0, . . . , 1︸ ︷︷ ︸, . . . , 0, 0, . . . , 1︸ ︷︷ ︸)
where each brace encloses k coordinates. So, following Lemma 19, the subring LF (E) of
Mn(Q) which is associated to the subfield F = Q( d

√
a) of E = Q( n

√
a) by the correspondence

of Theorem 12 is given by LF (E) = spanE(P1, Pα, . . . , Pαk−1).
In particular, let us take a = 2 and n = 6 so that E = Q(α) = Q( 6

√
2). The proper

subfields of E are exactly Q, Q( 3
√

2) and Q(
√

2). According to the description of LF (E)
just given, under the identification of L (E) = LQ(E) with M6(Q), the subrings R and S of
M6(Q) associated to, respectively, Q( 3

√
2) and Q(

√
2) are the following.

R =




a0 2b5 2a4 2b3 2a2 2b1
a1 b0 2a5 2b4 2a3 2b2
a2 b1 a0 2b5 2a4 2b3
a3 b2 a1 b0 2a5 2b4
a4 b3 a2 b1 a0 2b5
a5 b4 a3 b2 a1 b0

 : ai, bi ∈ Q



S =




a0 2b5 2c4 2a3 2b2 2c1
a1 b0 2c5 2a4 2b3 2c2
a2 b1 c0 2a5 2b4 2c3
a3 b2 c1 a0 2b5 2c4
a4 b3 c2 a1 b0 2c5
a5 b4 c3 a2 b1 c0

 : ai, bi, ci ∈ Q


The relationships between the various rings and fields at stake are summarized in Figure 3

below. Note that H = Aut(Q( 6
√

2)) is a 2-element group, the nontrivial automorphism being
the one sending 6

√
2 7→ − 6

√
2. The fixed field of H is Q( 3

√
2), of which Q( 6

√
2) is a Galois (in

fact quadratic) extension. We may alternatively describe the ring R as Q( 6
√

2) oH, in the
notation of Definition 16.

The subfield Q(
√

2) of Q( 6
√

2), on the other hand, is not the fixed field of any group of
automorphisms of Q( 6

√
2). Nonetheless, we are still able to describe Q(

√
2) as the “fixed

field” for the ring S which, this time, does not contain any nontrivial field automorphisms
and so, as an object, is rather divorced from the world of Galois groups.
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Figure 2: Subfields of Q( 6
√

2) correspond to ring extensions of Q( 6
√

2) in M6(Q).
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