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Abstract

We examine the axioms for an abstract C*-algebra homology theory and draw out
some of the standard consequences. Especially, we show that stable theories necessarily
satisfy Bott periodicity using an infinite swindle argument due to Cuntz.

1 Introduction

The most prominent examples of homology theories for C*-algebras are K-theory and related
theories. In this document, however, we will rarely be concerned with the inner workings of
any particular theory—only their abstract homological properties. We begin by setting down
axioms for a C*-algebra homology theory. Next, we show that, in any such theory, following
the construction of the Barratt-Puppe sequence in homotopy theory, the higher homology
groups and boundary maps can recovered from the 0th homology groups using iterated sus-
pension and mapping cones. Next, we show that, in fact, any homotopy-invariant, half-exact
functor from C*-algebras to abelian groups can be prolonged to a homology theory by the
same methods. Lastly, we show that the addition of the stability axiom leads automatically
to Bott periodicity using an argument originally due to Joachim Cuntz and appearing on
pages 61-63 of [3]. Much of this exposition is based on Lecture 8 of [4], a set of course notes
written by John Roe and available online through the AMS Open Math Notes project. See
also [1], [3], [5] and [6].

2 Axioms

We begin with a rather spartan definition of a C*-algebra homology theory, requiring only
homotopy-invariance and the existence of long exact sequences. Note that K-theory and its
affiliates are furthermore stable theories, i.e. are invariant under tensoring with the compact
operators. Stability has no analog among the Eilenberg-Steendrod axioms and will not be
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required for the time being, but is nonetheless a very important property of K-theory and
leads to Bott periodicity, as explained in Section 8.

Definition 1. A homology theory for C*-algebras consists of

• a sequence of functors En, n ≤ 0 from C*-algebras to abelian groups and

• for each short exact sequence of C*-algebras 0→ I → A→ B → 0, naturally induced
boundary maps ∂ : En−1(B)→ En(I), n ≤ 0

such that the following axioms are satisfied:

• Homotopy invariance. If ϕ and ψ are homotopic ∗-homomorphisms A → B, then
En(ϕ) = En(ψ), n ≤ 0.

• Long exact sequences. For each short exact sequence 0 → I → A → B → 0, the
functorially induced maps and boundary maps fit into a long exact sequence.

E0(I) E0(A) E0(B)

E−1(I) E−1(A) E−1(B)

E−2(I) E−2(A) E−2(B)

...

∂

∂

∂

Above, when we say that the boundary maps are “natural”, we mean that, given a commuting
diagram

0 I A B 0

0 I ′ A′ B′ 0

with exact rows, all of the resulting squares

En−1(B) En(I)

En−1(B
′) En(I ′)

∂

∂

are commutative. Thus, a morphism of short exact sequences induces a morphism of long
exact sequences.
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3 Additivity

Next, we address the compatibility of homology theories with direct sums. Indeed, thanks to
the long exact sequence axiom, the functors En of a homology theory are half-exact. That is,
if 0→ I → A→ B → 0 is an exact sequence of C*-algebras, then En(I)→ En(A)→ En(B)
is exact in the middle. It is simple to see that, more generally, any half-exact functor is
compatible with direct sums.

Lemma 2. Let E be a half-exact functor from C*-algebras to abelian groups. Then,

1. For any C*-algebras A1 and A2, there is a unique identification of E(A1 ⊕ A2) with
E(A1)⊕E(A2) under which the standard inclusions and projections of A1⊕A2 induce
the standard inclusions and projections of E(A1)⊕ E(A2).

2. Let ϕ : A1 ⊕ A2 → B be a ∗-homomorphism and write it as ϕ =
[
ϕ1 ϕ2

]
where

ϕi is the restriction of ϕ to Ai. Then, under the identification of E(A1 ⊕ A2) with
E(A1)⊕ E(A2), we have E(ϕ) =

[
E(ϕ1) E(ϕ2)

]
.

3. Relating to (2), if α and β are orthogonal ∗-homomorphisms A→ B (so that α+ β is
also a ∗-homomorphism), then E(α + β) = E(α) + E(β).

Proof sketch. 1. Half-exactness gives ran(E(ιi)) = ker(E(pri)) and functoriality gives
E(pri)E(ιi) = idE(Ai).

2. By (1), we have E(ιi) = ιi, under the identification of E(A1⊕A2) with E(A1)⊕E(A2),
and so E(ϕi) = E(ϕ ◦ ιi) = E(ϕ) ◦ ιi.

3. Factor through the copy of α(A)⊕ β(A) in B.

Additivity can be leveraged to establish all sorts of expected properties of a homology theory.
For example, we have the following proposition. We use the notation SA = C0(0, 1)⊗A for
the suspension of a C*-algebra A.

Proposition 3. Let A be a C*-algebra and let r : SA → SA be the isomorphism which
reverses the interval, i.e. sends f ∈ SA to t 7→ f(1− t). Then, for any homotopy-invariant,
half-exact functor E from C*-algebras to abelian groups, E(r) = −id.

Proof. Define α, β : SA→ SA by

α(f)(t) =

{
f(2t) 0 ≤ t ≤ 1

2

0 1
2
≤ t ≤ 1

β(f)(t) =

{
0 0 ≤ t ≤ 1

2

f(2− 2t) 1
2
≤ t ≤ 1.

Note that α and β are orthogonal, so α + β is a ∗-homomorphism. One may check that α
is homotopic to id, β is homotopic to r, and α + β is homotopic to 0. Thus, according to
Lemma 2, Part 3, we have id + E(r) = E(α) + E(β) = E(α + β) = 0, as desired.
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Later on in this exposition, we will be forced to make certain (arbitrary) choices of sign
conventions. The above proposition has the consequence that, if we chose, we could hide these
minus signs by reversing the orientation of an interval at some stage of our constructions.
However, we choose not to resort to such trickery.

Let us also make a note of the following simple consequence of the long exact sequence axiom
and the splitting lemma for abelian groups.

Proposition 4. Let 0→ I
ι→ A

π→ B → 0 be a short exact sequence of C*-algebras admitting
a right split β : B → A. Then, for any homology theory, there is a unique identification of
En(A) with En(I)⊕ En(B), n ≤ 0 under which ι, π and β induce the anticipated inclusions
and projections.

4 Recovering the higher groups using suspension

The cone CA = C0(0, 1]⊗ A of a C*-algebra A is always contractible, so, in any homology
theory, each of the boundary maps in the long exact sequence associated to the extension
0→ SA→ CA→ A→ 0 is an isomorphism.

εA : En−1(A)
∼=−→ En(SA)

Note that a ∗-homomorphism ϕ : A→ B leads to a commuting diagram

0 SA CA A 0

0 SB CB B 0

Sϕ Cϕ ϕ

and so, by naturality of boundary maps, a commuting square

En−1(A) En(SA)

En−1(B) En(SB).

εA

En−1(ϕ) En(Sϕ)

εB

Thus, the isomorphisms εA are natural in A. We record this as a proposition.

Proposition 5. For any homology theory, the boundary maps of all exact sequences of the
form 0→ SA→ CA→ A→ 0 give natural isomorphisms ε : En−1 → En ◦ S, n ≤ 0.

By the above, when dealing with a homology theory, one can rather harmlessly assume that
E−n = E0 ◦ Sn, n ≥ 0.
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5 Recovering the boundary maps using mapping cones

Let 0 → I → A
π→ B → 0 be a short exact sequence of C*-algebras. By definition, the

mapping cone Cπ of π is the C*-algebra

Cπ = {(f, a) ∈ CB ⊕ A : f(1) = π(a)},

where CB = C0(0, 1]⊗B denotes the cone of B. In the commutative realm, where B should
be thought of as a closed subset of A, the mapping cone corresponds to the space obtained by
attaching the cone CB to A along B. A basic principle of homotopy theory is that coning off

CB

A
B

Figure 1: The mapping cone Cπ.

a subset is as good as removing it, since the cone can be contracted. Thus, one should expect
the mapping cone to be equivalent, for homotopy-theoretic purposes, to I which corresponds
to the “complement” of B in A. Indeed, we have an obvious short exact sequence

0 I Cπ CB 0,
ι2 pr1

whence, CB being contractible, the inclusion of I as an ideal in Cπ induces isomorphisms
En(I)→ En(Cπ), n ≤ 0 in any homology theory.

Another short exact sequence involving Cπ is

0 SB Cπ A 0.
ι1 pr2

Because En(SB) ∼= En−1(B) and En(Cπ) ∼= En(I), the inclusion ι1 : SB → Cπ leads to maps
En−1(B)→ En(I). It turns out that, up to a sign, these are the boundary maps of the exact
sequence 0→ I → A

π→ B → 0.

Proposition 6. Let 0→ I → A
π→ B → 0 be a short exact sequence of C*-algebras. Then,

in any homology theory, the boundary maps ∂ : En−1(B)→ En(I), n ≤ 0 are given by

∂ = −En(ι2)
−1 ◦ En(ι1) ◦ εB,

where ι1 and ι2 are the factor inclusions of SB and I into Cπ and εB : En−1(B)
∼=→ En(SB)

is the boundary map of 0→ SB → CB → B → 0.
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Proof. The goal is to show that the square

En−1(B) En(I)

En(SB) En(Cπ)

∂

εB En(ι2)

En(ι1)

commutes after a sign change. Let ι =
[
ι1 ι2

]
be the inclusion of SB⊕I into Cπ. Note SB⊕I

sits as the kernel of the projection p : Cπ 7→ B sending (f, a) 7→ f(1) = π(a). Consider the

following three terms in the long exact sequence associated to 0→ SB⊕ I ι→ Cπ
p→ B → 0,

writing d for the boundary map.

En−1(B) En(SB ⊕ I) En(Cπ)d En(ι)
(1)

We claim that, after identifying En(SB⊕I) with En(B)⊕En(I), as in Lemma 2, the sequence
(1) becomes

En−1(B) En(SB)⊕ En(I) En(Cπ)

εB
∂

 [
En(ι1) En(ι2)

]

whence the equation En(ι) ◦ d = 0 reads En(ι1) ◦ εB + En(ι1) ◦ ∂ = 0, exactly the thing to
be proved. Lemma 2, Part 2 immediately gives that En(ι) =

[
En(ι1) En(ι2)

]
under the

identification. To see that the boundary map d in (1) has the desired form, consider the
following commutative diagram with exact rows.

0 SB CB B 0

0 SB ⊕ I Cπ B 0

0 I A B 0

ι

pr2

pr1

p

pr2

pr1

π

Naturality of boundary maps tells us that

En−1(B) En(SB)

En−1(B) En(SB ⊕ I)

En−1(B) En(I)

εB

d

En(pr1)

En(pr2)

∂

is commutative which, after the identification En(SB ⊕ I) = En(SB)⊕ En(I), says exactly
that the components of d are εB and ∂.
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6 Equivalence of mapping cone and ideal, revisited

Let 0 → I → A
π→ B → 0 be a short exact sequence of C*-algebras. In the preceding

section, we noted that the inclusion ι2 : I → Cπ induces isomorphisms on any homology
theory thanks to the short exact sequence 0 → I → Cπ → CB → 0 and the long exact
sequence axiom. We need to slightly generalize this observation so that it applies to any
homotopy-invariant, half-exact functor.

Lemma 7. Let 0 → I → A
π→ B → 0 be a short exact sequence of C*-algebras. Then,

for any homotopy-invariant, half-exact functor E from C*-algebras to abelian groups, the
inclusion ι2 : I → Cπ induces an isomorphism E(I)→ E(Cπ).

Proof. Applying half-exactness of E to the short exact sequence 0 → I → Cπ → CB → 0,
we get that E(ι2) is surjective. For injectivity, it is useful to introduce the C*-algebra
Q = {f ∈ C[0, 1]⊗ A : f(0) ∈ I}, of which I is a deformation retract. There are maps

α : I → Q β : Q→ I γ : Q→ Cπ

given as follows: α sends an element of I to the corresponding constant function, β is
f 7→ f(0) and γ is f 7→ (π ◦ f, f(1)). Obviously, β ◦ α = idI . Furthermore, it is easy to
check that α ◦ β is homotopic to idQ, so α and β induce inverse isomorphisms between E(I)
and E(Q). The kernel of γ is a copy of CI so, applying half-exactness to the short exact

sequence 0→ CI → Q
γ→ Cπ → 0, we see that E(γ) is injective. Finally, the diagram

I Cπ

Q

α

ι2

γ

is commutative so, from E(ι2) = E(γ) ◦ E(α), we get surjectivity of E(ι2).

7 The Barratt-Puppe sequence

Our next task is to take any half-exact, homotopy-invariant functor E from C*-algebras to
abelian groups and construct a containing homology theory with E0 = E. According to
Proposition 5, if this can be done at all, it can be done while setting E−n = E ◦ Sn. Since
the functor S preserves exact sequences and homotopy of ∗-homomorphisms, the functors
En so defined are also half-exact and homotopy-invariant.

Coming to the boundary maps, there is a bit of choice in how to proceed. By Proposition 5,
the boundary maps of exact sequences 0 → SA → CA → A → 0 are going to be natural
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automorphisms εA : En−1(A) = En(SA)→ En(SA). It is reasonable to impose either εA = id
or εA = −id. In the first case, according to Proposition 6, the boundary maps

∂ : En−1(B) = En(SB)→ En(I)

of all other exact sequences 0→ I → A
π→ B → 0 must be defined by

∂ = −En(ι2)
−1 ◦ En(ι1),

where ι1 and ι2 are the factor inclusions of SB and I into Cπ. Alternatively, we could impose
εA = −id for all A, leading to a sign-free version of the above formula for the boundary maps.
We shall opt for the first option and accept the unpleasant minus sign. By Proposition 3, we
could also hide this minus sign by reversing the orientation of an interval somewhere.

Theorem 8. Let E be a homotopy-invariant, half-exact functor from C*-algebras to abelian
groups. Define a sequence of functors E−n, n ≥ 0 by iterated suspension: E−n = E ◦ Sn.
For each short exact sequence of C*-algebras 0 → I → A

π→ B → 0, define boundary maps
∂ : En−1(B) = En(SB) → En(I) by ∂ = −En(ι2)

−1 ◦ En(ι1), where ι1 and ι2 are the factor
inclusions of SB and I into the mapping cone Cπ. Then, these functors and boundary maps
define a C*-algebra homology theory.

Proof. Since suspension preserves exact sequences and homotopy of ∗-homomorphisms, the
functors En are homotopy-invariant and half-exact. Naturality of the boundary maps follows
from a naturality in the mapping cone construction: given a commuting diagram with exact
rows

0 I A B 0

0 I ′ A′ B′ 0,

π

π′

we obtain a corresponding commuting diagram

SB Cπ I

SB′ Cπ′ I ′

ι1 ι2

ι′1 ι′2

from which the naturality of the boundary maps can be deduced. So, the main thing is
to check that, given any short exact sequence of C*-algebras 0 → I → A

π→ B → 0, the
associated long exact sequence really is exact. That is, for any n ≤ 0,

En(SA) En(SB) En(I) En(A) En(B)∂ (2)

is exact. Since the functors En are half-exact, (2) is exact at En(A). By definition of the
boundary map,

En(SB) En(I) En(A)

En(SB) En(Cπ) En(A)

∂

−id En(ι2)

En(ι1) En(pr2)
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is a commutative diagram and so, the vertical maps being isomorphisms and the lower row

being exact because 0→ SB
ι1→ Cπ

pr2→ A→ 0 is an exact sequence, we get that (2) is exact
at En(I). Finally, to get exactness at En(SB), define a C*-algebra

D = {(f, g) ∈ CB ⊕ CA : f(1) = π(g(1))},

The algebra D is a realization of the mapping cone of 0→ SB → Cπ → A→ 0. Accordingly,

CB

CA

B

Figure 2: The double cone D.

D fits into an exact sequence

0 SA D Cπ 0
ι2 q

where q sends (f, g) 7→ (f, f(1)) = (f, π(g(1))) and furthermore, by Lemma 7, the inclusion
ι1 : SB → Cπ induces an isomorphism on En. We argue that the diagram

En(SA) En(SB) En(I)

En(SA) En(D) En(Cπ)

En(Sπ) ∂

−En(ι1) En(ι2)

En(ι2) En(q)

is commutative, which will give the exactness of (2) at En(SB). Firstly, q◦ι1 = ι1 : SB → Cπ,
so the square on the right commutes by definition of ∂. Coming to the square on the left,
according to Proposition 3, the interval reversal map r : SA → SA induces −id on En, so
we will be done if ι2 ◦ r : SA→ D and ι1 ◦ Sπ : SA→ D are homotopic ∗-homomorphisms.
This is the case, the rough idea being to slide the map from one cone of D to the other. In
terms of formulas, define ϕs : SA→ D, s ∈ [0, 1] by ϕs(f) = (gs, hs), where

gs(t) =

{
0 0 ≤ t ≤ s

π(f(t− s)) s ≤ t ≤ 1
hs(t) =

{
0 0 ≤ t ≤ 1− s
f(2− s− t) 1− s ≤ t ≤ 1

One may verify that ϕ0 = ι1 ◦ Sπ and ϕ1 = ι2 ◦ r.
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8 Bott Periodicity

In this section, we that prove every stable homology theory satisfies Bott periodicity following
the proof given by Cuntz in [3]. Fundamentally, Cuntz’s proof is a kind of infinite swindle.
In its course, we shall need to show that a pair of ∗-homomorphisms induce the same map
at the homological level. To achieve this, we pass to a pair of auxiliary ∗-homomorphisms
by adding on an extra (orthogonal) piece to the original ones then show that these enlarged
∗-homomorphisms are actually homotopic. The remainder of the proof is then given over
to carefully “cancelling off” the added piece (at the homological level) in order that the
original ∗-homomorphisms may be seen to also induce the same map. This last stage of the
proof is somewhat delicate, but elementary; it makes use of a purpose-built split extension of
the Toeplitz algebra, constructed as the pullback of another extension. We write K for the
C*-algebra of compact operators on `2(N) and Ei,j, i, j ≥ 0 for the rank-1 operator therein
which sends the jth standard basis vector to the ith. The same notation Ei,j will be used
for the matrix units in Mn(C), 0 ≤ i, j ≤ n− 1.

Definition 9. A functor E from C*-algebras to abelian groups is called stable if, for every

C*-algebra A, the corner inclusion E0,0⊗ idA : A→ K⊗A induces an isomorphism E(A)
∼=→

E(K⊗ A).

Because, in any homology theory, the functors E−n are naturally isomorphic to E0 ◦ Sn and
stabilization commutes with suspension, if the initial functor E0 of a homology theory is
stable, so are the higher functors E−n.

Cuntz’s proof of Bott periodicity makes use of the Toeplitz algebra T, which we take to be
the C*-algebra on `2(N) generated by the unilateral shift S which sends each standard basis
vector to its successor: ξi 7→ ξi+1, i ≥ 0. The Toeplitz algebra is universal with respect
to isometries: given an isometry W in a C*-algebra A, there is a unique ∗-homomorphism
T→ A sending S 7→ W . Denote by σ : T→ C(S1) the symbol map, which sends S 7→ z, the
coordinate function of the unit circle S1 ⊆ C. The kernel of σ is the compact operators K,
giving the very important Toeplitz extension.

0 K T C(S1) 0σ

Denote by σ1 : T → C the composition of σ with eval1 : C(S1) → C i.e. the map sending
S 7→ 1. The Toeplitz algebra is unital, so we have also the scalar map ι : C→ T determined
by 1 7→ 1. Our main goal is to provide a homotopical proof of the following statement, of
which Bott periodicity is a straightforward consequence.

Theorem 10. Let E−n, n ≥ 0 be a stable homology C*-algebra homology theory. Then, the
maps σ1 : T→ C and ι : C→ T induce inverse isomorphisms between E−n(T) and E−n(C).
More generally, tensoring with any C*-algebra A, we get isomorphisms between E−n(T⊗A)
and E−n(A).
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The proof of the more general statement, involving an arbitrary algebra A, is not different
from the proof in the special case A = C. One simply needs to tensor algebras by A and
maps by idA in the appropriate places. Accordingly, we shall only bother to prove the first
statement. In one direction, we have σ1 ◦ ι = idC, so one just needs to show that ψ1 = ι ◦ σ1,
the homomorphism T → T sending S 7→ 1, induces the identity on E(T). The simplest
explanation for this would be that ψ1 is homotopic to the identity map ψ0 = idT, but this
cannot be so. Indeed, a homotopy between ψ0 and ψ1 amounts to a path of isometries joining
the two images ψ0(S) = S and ψ1(S) = 1 of the generator of the Toeplitz algebra.1 Because
S has index −1, such a path does not exist.

To get around this difficulty we work in the larger C*-algebra A = K ⊗ T + T ⊗ 1, which
acts on `2(N)⊗ `2(N). The algebra A fits into an extension

0 K⊗ T A C(S1) 0π (3)

where first map is inclusion of the ideal and π is determined by its restriction to T⊗1 where
it acts as the obvious symbol map T ⊗ 1 → C(S1) sending S ⊗ 1 7→ z. Define isometries
W0,W1 ∈ A by

W0 = E0,0 ⊗ S + S(1− E0,0)⊗ 1 W1 = E0,0 ⊗ 1 + S(1− E0,0)⊗ 1

whose action on the standard basis of `2(N)⊗ `2(N) is pictured below.

W0

• • • •

• • • •

• • • •

• • • •

· · ·

· · ·

· · ·

...
...

...
...

· · ·
. . .

W1

• • • •

• • • •

• • • •

• • • •

· · ·

· · ·

· · ·

...
...

...
...

· · ·
. . .

Cuntz’s proof is based on the fact that these isometries are homotopic in A. Considering
their behaviour on the left column, one may think of this as a sort of generalized homotopy
between S and 1 in T. Thus, even though no honest homotopy can exist, by making some
extra room and working with isometries whose defect projections are infinite-dimensional,
they can be connected.

1Indeed, a legitimate way to define a homotopy between two ∗-homomorphisms ψ0, ψ1 : A → B is as a
∗-homomorphism Ψ : A → C([0, 1]) ⊗ B satisfying ψi = evali ◦ Ψ for i = 0, 1. When A = T, the universal
property of T says that Ψ amounts to a choice of isometry in C([0, 1]) ⊗ B, which is the same thing as a
norm-continuous path of isometries in B (assuming unital ∗-homomorphisms, for simplicity).
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Lemma 11. There is a path of isometries Wt, t ∈ [0, 1] in A from W0 to W1 which, moreover,
satisfies π(Wt) = z for all t ∈ [0, 1].

The proof of this lemma will rest on a simple fact concerning permutations of a countably
infinite set: namely that the 2-sided shift can be factored as the product of two involutions.
Indeed, on Z, composing x 7→ −x and x 7→ 1− x yields the shift x 7→ x+ 1. Geometrically
speaking, this is the infinite dihedral group version of the fact from plane geometry that the
composition of two reflections is a rotation through twice the angle between the reflecting
lines. Indeed, x 7→ −x and x 7→ 1− x are reflection through x = 0 and x = 1

2
, respectively,

and x 7→ x+ 1 is a sort of infinite rotation.

The factorization just discussed can be expatriated to M2(C)⊗T, thought of as a C*-algebra
on `2({0, 1})⊗ `2(N), where it assumes the form of a factorization of the unitary

U0 = E0,0 ⊗ S + E0,1 ⊗ E0,0 + E1,1 ⊗ S∗

(a manifestation of the bilateral shift) as the product U = FE of the two symmetries

E = E0,1 ⊗ 1 + E1,0 ⊗ 1 F = E0,0 ⊗ E0,0 + E1,0 ⊗ S∗ + E0,1 ⊗ S,

as may be read from Figure 3 below.

Figure 3: Factorization of the bilateral shift as a product of two symmetries.

U0

• •

• •

• •

• •
...

...

E

• •

• •

• •

• •
...

...

F

• •

• •

• •

• •
...

...

Recall that a symmetry F in a unital C*-algebra A is an idempotent unitary: F 2 = 1,
F ∗ = F . There is a bijective correspondence between projections and symmetries; every
symmetry F takes the form F = −P + P⊥ where P is a projection and P⊥ = 1− P is the
orthocomplementary projection. This presentation makes it clear that every symmetry is
connected to the identity by the path of unitaries t 7→ eπitP + P⊥. Thus, the factorization
U0 = FE above shows that the bilateral shift U0 is homotopic to 1 inside the unitary group
of M2(C)⊗ T.
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Proof of Lemma 11. In the above discussion, we noted there is a path Ut, t ∈ [0, 1] of uni-
taries in M2(C) ⊗ T from the bilateral shift U0 = E0,0 ⊗ S + E0,1 ⊗ E0,0 + E1,1 ⊗ S∗ to the
identity U1 = E0,0 +E1,1. Let us now work in A = K⊗T+T⊗1 and add (1−E0,0−E1,1)⊗1
to this homotopy, to get a path of unitaries Vt from V0 = U1 + (1−E0,0−E1,1)⊗1 to V1 = 1.
Because the homotopy really takes place in M2(C) ⊗ T ⊆ K ⊗ T, it is clear that π(Vt) = 1
for all t ∈ [0, 1]. Now, setting Wt = VtW1 gives the desired path of isometries from W0 to
W1 which furthermore satisfies π(Wt) = π(Vt)π(W1) = z for all t, as needed.

It remains to see how Lemma 11 applies to prove Theorem 10. We package the remainder
of the argument as the following technical lemma.

Lemma 12. Suppose 0 → I → A
π→ B → 0 is a short exact sequence, ϕi : C → I, i = 0, 1

and σ : C → B are ∗-homomorphisms, and σ has a lift σ : C → A.

C

0 I A B 0

σσ

ϕi

π

If σ is orthogonal to ϕ0 and ϕ1, so that θi = ϕi +σ, i = 0, 1 are ∗-homomorphisms and there
is a homotopy (θt)t∈[0,1] joining θ0 to θ1 such that π ◦ θt = σ for all t ∈ [0, 1], then ϕ0 and ϕ1

induce the same maps En(C)→ En(I) in any C*-algebra homology theory.

Proof. The hypotheses are set up so that we can make use of the pullback C*-algebra A =
{(a, c) ∈ A⊕ C : π(a) = σ(c)} which fits into a pulled back short exact sequence

0 I A C 0

0 I A B 0.

ι1 pr2

pr1 σ

π

The lift σ of σ yields a right split of the top sequence β : C → A sending c 7→ (σ(c), c).
Thus, the induced maps En(ι1) : En(I) → En(A) are injective. In the same way, the maps
θt, t ∈ [0, 1] (which are also lifts of σ) yield right splits χt : C → A sending c 7→ (θt(c), c).
By homotopy invariance, we have En(χ0) = En(χ1). Writing χi = βi + ϕi ◦ ι1 and using
Proposition 2, we get En(β) +En(ϕ0) ◦En(ι1) = En(β) +En(ϕ1) ◦En(ι1), whence, canceling
En(β) and using injectivity of En(ι1), we get the result.

Finally, we assemble Lemma 11 and Lemma 12 to prove Theorem 10.

Proof of Theorem 10. Since σ1◦ι = idC, we only need to show that ι◦σ1 induces the identity
on En(T). Consider K⊗T as a C*-algebra of operators on `2(N)⊗`2(N). Let ϕ0 : T 7→ K⊗T
denote the corner inclusion E0,0⊗idT which sends the unilateral shift S to the partial isometry
E0,0 ⊗ S. Let ϕ1 = ϕ1 ◦ ι ◦ σ1, which sends S to the projection E0,0 ⊗ 1. By the assumption
that En is stable, we will be done if we show that En(ϕ0) = En(ϕ1). We apply Lemma 12,
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taking I = K⊗T, A = K⊗T+T⊗ 1, B = C(S1), 0→ I → A
π→ B → 0 the exact sequence

(3) from Lemma 11, C = T, σ the symbol map T → C(S1) and the split σ : T → B to be
given by S 7→ S(1− E0,0)⊗ 1.

T

0 K⊗ T K⊗ T + T⊗ 1 C(S1) 0

σ
σ

ϕi

π

It is simple to check that the hypotheses of Lemma 12 are satisfied, and so ϕ0 and ϕ1 induce
the same maps E(T)→ E(K⊗ T), as was to be proved.

Define T0 to be the kernel of the symbol map σ1 : T → C, i.e. the C*-algebra of Toeplitz
operators whose symbol vanishes at 1 ∈ S1. Indeed, T is the unitization of T0, the splitting
being the map ι : C→ T.

0 T0 T C 0
σ1

ι

Thus, Theorem 10, together with Proposition 4, gives

Corollary 13. For any stable homology theory, one has En(T0) = 0, n ≤ 0 and, more
generally, En(T0 ⊗ A) = 0, n ≤ 0 for any C*-algebra A.

The above corollary quickly leads to Bott periodicity through consideration of the nonunital
form of the Toeplitz extension

0 K T0 C0(0, 1) 0
σ0

The map σ0 is the usual symbol map, except that (0, 1) is identified with S1\{1} via t 7→ e2πit.
More generally, because C0(0, 1) is nuclear, this sequence remains exact after tensoring with
an arbitrary C*-algebra A (see Corollary 3.7.4 in [2]).

0 K⊗ A T0 ⊗ A SA 0
σ0⊗id

Corollary 13 shows that the middle terms of the long exact sequences associated to the above
short exact sequence all vanish, for any stable homology theory, and so we get

Theorem 14 (Bott periodicity). For any stable homology theory, for any C*-algebra A,

the boundary maps associated to the extension 0 → K ⊗ A → T0 ⊗ A
σ0⊗id→ SA → 0 are

natural isomorphisms En−2(A) → En(A), having made use of the natural identifications
En−1(SA) = En−2(A) and En(K⊗ A) = En(A).
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9 Relation to the usual Bott map in K-theory

In this last section we restrict attention to the usual K-theory functor and relate the iso-
morphism K0(S

2A) → K0(A) of Theorem 14 coming from the boundary map of the exten-
sion

0 K⊗ A T0 ⊗ A SA 0
σ0⊗id

to the Bott map K0(A) → K0(S
2A) coming from the tautological line bundle on CP1. It

makes little difference if we restrict attention to the case A = C, and we shall content
ourselves with an analysis of this case. Since K0(S

2C) ∼= K0(C) ∼= Z, only two isomorphisms
are possible. Thus, the entirety of our reward for the expenditure of effort here will be the
resolution of a sign ambiguity.

First, we should elect a generator for the K0 group of S2C = C0(0, 1)2. We use [H] − [1],
where H is, in effect, the tautological projection2 in M2(C(CP1)). We shall prefer to think of
CP1 as the one-point compactification D◦∪{∞} of the open unit disk D◦ = {z ∈ C : |z| < 1}
or, equivalently, as the closed unit disk D with boundary circle S1 collapsed to a point. In this
picture, thinking of C(CP1) as {f ∈ C(D) : f is constant on S1}, the tautological bundle is
given on z ∈ D by projection onto the unit vector (z,

√
1− |z|2).

H(z) =

[
|z|2 z

√
1− |z|2

z
√

1− |z|2 1− |z|2

]
To realize the generator [H] − [1] as an element of K0(C0(0, 1)2), we need to choose an
orientation-preserving homeomorphism (0, 1)2 → D◦. Any two such homeomorphisms are
isotopic, so the precise choice is not so important. Nonetheless, it is convenient for present
purposes to use (s, t) 7→ (1− s) · 1 + s · e2πit.

Proposition 15. The isomorphism K0(C0(0, 1)2) → K0(C) of Theorem 14 sends the gen-
erator [H]− [1] of K0(C0(0, 1)2) to −[1] ∈ K0(C).

Proof. If we identify K0(C) with K0(K) using [1] 7→ [E0,0], then the isomorphism of The-
orem 14 is just the boundary map ∂ : K0(C0(0, 1)2) → K0(K) of the exact sequence
0 → K → T0

σ0→ C0(0, 1) → 0. By definition, ∂ = −ι1∗ ◦ (ι2∗)
−1 where ι1 and ι2 are

the inclusions of C0(0, 1)2 and K into the mapping cone Cσ0 . So, we just need to show that
ι1∗([H]− [1]) = ι2∗([E0,0]) or, equivalently,

ι̃1∗([H])− ι2∗([E0,0]) = [1] ∈ K0(C̃σ0).

The unitization is necessary because H has coefficients in C(CP1) = ˜C0(0, 1)2.

2The elements of CP1 are complex lines in C2, which may equally well be thought of as rank-1 projections
in M2(C).
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Let us take a moment to clarify what C̃σ0 looks like, given all the implicit identifications we
are making. By definition, Cσ0 sits in the pullback diagram

Cσ0 T0

C0((0, 1]× (0, 1)) C0(0, 1).

σ0

f 7→f(1,·)

If we identify (0, 1] × (0, 1) with D \ {1} using (s, t) 7→ (1 − s) · 1 + s · e2πit and (0, 1) with
S1 \ {1} using t 7→ e2πit, then this diagram becomes

Cσ0 T0

C0(D \ {1}) C0(S
1 \ {1}).

σ

restr

where restr is the restriction map. Since the unitization of a pullback is the pullback of the
unitized diagram, we get the that the unitization C̃σ0 sits in the following pullback diagram

C̃σ0 T

C(D) C(S1)

σ

restr

.

In this picture, the unitization of ι1 : C0(0, 1)2 → Cσ0 is the map ι̃1 : C(CP1)→ C̃σ0 sending
f 7→ (f, f(∞)) and so ι̃1 sends H ∈M2(C(CP1)) to([

|z|2 z
√

1− |z|2
z
√

1− |z|2 1− |z|2

]
,

[
1 0
0 0

])
∈M2(C̃σ0).

Meanwhile, ι2 sends E0,0 ∈ K to (0, E0,0) ∈ Cσ0 ⊆ C̃σ0 . Thus, ι̃1∗([H]) − ι2∗([E0,0]) is
represented by the projection

P =

([
|z|2 z

√
1− |z|2

z
√

1− |z|2 1− |z|2

]
,

[
1− E0,0 0

0 0

])
∈M2(C̃σ0).

Note this is precisely the range projection of the partial isometry

W =

([
z 0√

1− |z|2 0

]
,

[
V 0
0 0

])
∈M2(C̃σ0).

whose source projection is ([
1 0
0 0

]
,

[
1 0
0 0

])
,

which proves that ι̃1∗([H])− ι2∗([E0,0]) = [1], as was needed.
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